940 research outputs found

    Melanotic oncocytic metaplasia of the nasopharynx as a benign mimicker of malignant melanoma: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Melanotic variant of oncocytic metaplasia of the nasopharynx is an extremely rare condition.</p> <p>Case report</p> <p>A 73-year-old Japanese man presented with nasal congestion and chill. Nasoscopic examination revealed multiple black nodules around the bilateral torus tubarius. The nodules were biopsied to determine the histology. The clinical differential diagnosis was malignant melanoma or hemangioma. Microscopically, there were oncocytic plump cells with abundant brown pigmented granules showing glandular pattern. No significant atypia was found. The pigment was positive for Fontana-Masson staining, and negative for Berlin blue staining, showing that it was melanin pigment. Immunohistochemically, S100-positive HMB45-negative dendritic cells were also found.</p> <p>Conclusion</p> <p>Such a pigmented variant of benign oncocytic lesion is very rare, and only 15 cases have been reported in the English literature. As a benign mimicker of malignant melanoma, melanocytic oncocytic metaplasia should be always taken into consideration in the clinical setting.</p

    Template Synthesis of Three-Dimensional Cubic Ordered Mesoporous Carbon With Tunable Pore Sizes

    Get PDF
    Three-dimensional cubic ordered mesoporous carbons with tunable pore sizes have been synthesized by using cubic Ia3d mesoporous KIT-6 silica as the hard template and boric acid as the pore expanding agent. The prepared ordered mesoporous carbons were characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption–desorption analysis. The results show that the pore sizes of the prepared ordered mesoporous carbons with three-dimensional cubic structure can be regulated in the range of 3.9–9.4 nm. A simplified model was proposed to analyze the tailored pore sizes of the prepared ordered mesoporous carbons on the basis of the structural parameters of the silica template

    Sensorineural hearing loss in Lassa fever: two case reports

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Lassa fever is an acute arena viral haemorrhagic fever with varied neurological sequelae. Sensorineural hearing loss is one of the rare complications which occur usually during the convalescent stage of the infection.</p> <p>Case presentation</p> <p>The cases of two female patients aged 19 and 43 years old, respectively, with clinical features suggestive of Lassa fever and confirmed by immunoserological/Lassa-virus-specific reverse transcriptase polymerase chain reaction are presented. Both patients developed severe sensorineural hearing loss at acute phases of the infections.</p> <p>Conclusion</p> <p>Sensorineural hearing loss from Lassa fever infections can occur in both acute and convalescent stages and is probably induced by an immune response.</p

    Complement-Mediated Virus Infectivity Neutralisation by HLA Antibodies Is Associated with Sterilising Immunity to SIV Challenge in the Macaque Model for HIV/AIDS.

    Get PDF
    Sterilising immunity is a desired outcome for vaccination against human immunodeficiency virus (HIV) and has been observed in the macaque model using inactivated simian immunodeficiency virus (SIV). This protection was attributed to antibodies specific for cell proteins including human leucocyte antigens (HLA) class I and II incorporated into virions during vaccine and challenge virus preparation. We show here, using HLA bead arrays, that vaccinated macaques protected from virus challenge had higher serum antibody reactivity compared with non-protected animals. Moreover, reactivity was shown to be directed against HLA framework determinants. Previous studies failed to correlate serum antibody mediated virus neutralisation with protection and were confounded by cytotoxic effects. Using a virus entry assay based on TZM-bl cells we now report that, in the presence of complement, serum antibody titres that neutralise virus infectivity were higher in protected animals. We propose that complement-augmented virus neutralisation is a key factor in inducing sterilising immunity and may be difficult to achieve with HIV/SIV Env-based vaccines. Understanding how to overcome the apparent block of inactivated SIV vaccines to elicit anti-envelope protein antibodies that effectively engage the complement system could enable novel anti-HIV antibody vaccines that induce potent, virolytic serological response to be developed

    Damage signature of fatigued fabric reinforced plastics in the pulsed ultrasonic polar scan

    Get PDF
    This study investigates the use of both the amplitude and time-of-flight based pulsed ultrasonic polar scan (P-UPS) for the nondestructive detection and evaluation of fatigue damage in fiber reinforced composites. Several thermoplastic carbon fabric reinforced PPS specimens (CETEX), loaded under various fatigue conditions, have been scanned at multiple material spots according to the P-UPS technique in order to extract material degradation in a quantitative way. The P-UPS results indicate that shear dominated fatigued carbon/PPS goes with a reduction of shear properties combined with large fiber distortions. The P-UPS results of the tension-tension fatigued carbon/PPS samples on the other hand reveal a directional degradation of the stiffness properties, reaching a maximum reduction of -12.8% along the loading direction. The P-UPS extracted damage characteristics are fully supported by simulations, conventional destructive tests as well as visual inspection. The results demonstrate the excellent capability of the P-UPS method for nondestructively assessing and quantifying both shear-dominated and tension-tension fatigue damage in fabric reinforced plastics

    Finite volume analysis of temperature effects induced by active MRI implants with cylindrical symmetry: 1. Properly working devices

    Get PDF
    BACKGROUND: Active Magnetic Resonance Imaging implants are constructed as resonators tuned to the Larmor frequency of a magnetic resonance system with a specific field strength. The resonating circuit may be embedded into or added to the normal metallic implant structure. The resonators build inductively coupled wireless transmit and receive coils and can amplify the signal, normally decreased by eddy currents, inside metallic structures without affecting the rest of the spin ensemble. During magnetic resonance imaging the resonators generate heat, which is additional to the usual one described by the specific absorption rate. This induces temperature increases of the tissue around the circuit paths and inside the lumen of an active implant and may negatively influence patient safety. METHODS: This investigation provides an overview of the supplementary power absorbed by active implants with a cylindrical geometry, corresponding to vessel implants such as stents, stent grafts or vena cava filters. The knowledge of the overall absorbed power is used in a finite volume analysis to estimate temperature maps around different implant structures inside homogeneous tissue under worst-case assumptions. The "worst-case scenario" assumes thermal heat conduction without blood perfusion inside the tissue around the implant and mostly without any cooling due to blood flow inside vessels. RESULTS: The additional power loss of a resonator is proportional to the volume and the quality factor, as well as the field strength of the MRI system and the specific absorption rate of the applied sequence. For properly working devices the finite volume analysis showed only tolerable heating during MRI investigations in most cases. Only resonators transforming a few hundred mW into heat may reach temperature increases over 5 K. This requires resonators with volumes of several ten cubic centimeters, short inductor circuit paths with only a few 10 cm and a quality factor above ten. Using MR sequences, for which the MRI system manufacturer declares the highest specific absorption rate of 4 W/kg, vascular implants with a realistic construction, size and quality factor do not show temperature increases over a critical value of 5 K. CONCLUSION: The results show dangerous heating for the assumed "worst-case scenario" only for constructions not acceptable for vascular implants. Realistic devices are safe with respect to temperature increases. However, this investigation discusses only properly working devices. Ruptures or partial ruptures of the wires carrying the electric current of the resonance circuits or other defects can set up a power source inside an extremely small volume. The temperature maps around such possible "hot spots" should be analyzed in an additional investigation
    • …
    corecore